Cisplatin inhibits protein splicing, suggesting inteins as therapeutic targets in mycobacteria

J Biol Chem. 2011 Jan 14;286(2):1277-82. doi: 10.1074/jbc.M110.171124. Epub 2010 Nov 8.

Abstract

Mycobacterium tuberculosis harbors three protein splicing elements, called inteins, in critical genes and their protein products. Post-translational removal of the inteins occurs autocatalytically and is required for function of the respective M. tuberculosis proteins. Inteins are therefore potential targets for antimycobacterial agents. In this work, we report that the splicing activity of the intein present in the RecA recombinase of M. tuberculosis is potently inhibited by the anticancer drug cisplatin (cis-diamminedichloro-platinum(II)). This previously unrecognized activity of cisplatin was established using both an in vitro intein splicing assay, which yielded an IC(50) of ∼2 μM, and a genetic reporter for intein splicing in Escherichia coli. Testing of related platinum(II) complexes indicated that the inhibition activity is highly structure-dependent, with cisplatin exhibiting the best inhibitory effect. Finally, we report that cisplatin is toxic toward M. tuberculosis with a minimum inhibitory concentration of ∼40 μM, and in genetic experiments conducted with the related Mycobacterium bovis bacillus Calmette-Guérrin (BCG) strain, we show that cisplatin toxicity can be mitigated by intein overexpression. We propose that cisplatin inhibits intein activity by modifying at least one conserved cysteine residue that is required for splicing. Together these results identify a novel active site inhibitor of inteins and validate inteins as viable targets for small molecule inhibition in mycobacteria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology
  • Cisplatin / pharmacology*
  • Drug Design
  • Escherichia coli / genetics
  • Gene Expression Regulation, Bacterial / drug effects
  • Genes, Reporter
  • Green Fluorescent Proteins / genetics
  • Inteins / drug effects*
  • Microbial Sensitivity Tests
  • Mycobacterium bovis / drug effects
  • Mycobacterium bovis / genetics
  • Mycobacterium bovis / growth & development
  • Mycobacterium tuberculosis / drug effects*
  • Mycobacterium tuberculosis / genetics*
  • Mycobacterium tuberculosis / growth & development
  • Platinum Compounds / pharmacology
  • Protein Splicing / drug effects*
  • Rec A Recombinases / genetics
  • Rec A Recombinases / metabolism

Substances

  • Antineoplastic Agents
  • Platinum Compounds
  • Green Fluorescent Proteins
  • Rec A Recombinases
  • Cisplatin